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Abstract— In this work a dynamic model of the rotor
of a helicopter is obtained with one single forward recur-
sion using the novel Body Decomposition Approach, which
allows for modular and simple programming of simple body
blocks. The rotor is treated as a non-inertial tree-like multi-
body mechanical system. The generalized coordinates are
represented by the pose of the helicopter and the articular
mechanism movements of the blades. The generalized forces
are compounded by the control forces at each coordinates
plus the external aerodynamic effects which can be included
as lumped forces by the power transmission principle.

I. INTRODUCTION
Recent technology advances had made possible the study

and development of an unmanned aerial vehicles (UAV)
which has been used to perform a wide variety of functions
such as scientific research, remote sensing, transport and
interact in hostile environment areas which may be too
dangerous for piloted aircrafts. While early UAVs were not
fully autonomous (Shim, 2000), the field of air-vehicle auto-
nomy has been a recently emerging field, whose economics
is largely driven by the military to develop battle-ready
technology. An UAV is considered difficult to use or even
dangerous (Pir, 2009) because human intervention is requi-
red to command the UAV altogether with normal control
algorithms (Shim, 2000). Compared to the manufacturing of
UAV flight hardware, the market for autonomy technology
is fairly immature and undeveloped. Because of this, auto-
nomy is the bottleneck for future UAV developments, and
the overall value and rate of expansion of the future UAV
market could be largely driven by advances to be made in
the field of autonomy (Dickerson, 2007).

The helicopter is a particular type of UAV that shows
a versatile operational regime that surpasses other UAVs.
In contrast to fixed-wing airplanes, the rotary-wing (rotor)
of the helicopter has the ability to perform different flight
regimes like hover, backward, lateral and pure vertical flight.
These characteristics have attracted civil and military inter-
ests in applications such as traffic, surveillance, air pollution
monitoring, area mapping, agricultural applications, explo-
ration and many others. However to achieve such flying ope-
rational versatility helicopters requires complex controllers
because helicopters are under-actuated mechanisms whose
dynamic model exhibits high non-linearities and its physical
parameters are difficult to measure accurately.

We present a high fidelity model of a helicopter, based
on the classical architecture of one vertical main rotor

and a secondary horizontal compensation tail rotor -as the
one shown in Fig.1 - generating a 13 DOF (Degrees Of
Freedom) model which traps all the multi-body coupled
inertial effects and most of the aerodynamics nonlinearities,
based on the Body Decomposition Approach developed in
(Olguin, 2011). This approach allows to obtain the nonlinear
dynamic model in a modular and simple algorithm which
allows for the addition of any external forces contribution
at each body level. The resulting simulator provides a
computationally efficient model-based estimation.

Figura 1: Xcell-90 helicopter

The implementation is made using MATLAB-
SIMULINK, creating a specific Body Decomposition
modeling toolbox, and it is applied in a radio-controlled
mini helicopter, model X-cell 90 of Miniature-Aircraft c©.

II. MODELING BACKGROUND

II-A. Spatial Kinematics
To define the kinematics of the model the Screw theory

is used to express 6D (6 Dimension) point vectors, also
called spatial vectors whose algebra has been more recently
used and widely explained by (Featherstone, 2000). A Screw
is a mathematical term defined by a pair (a,b) ∈ IR3 of
3D vectors that express a product of the form a+b×x =
y for all 3D vectors (a,b,x,y) ∈ IR3 where x and y are
inputs variables, a is a line vector, and b is a free vector
(Featherstone, 2000).

We can use some physical screws in the motion of rigid
bodies like the twist, defined by the pair (v,ω), and the
wrench, defined by the pair (f,n):

ν ,

(
v
ω

)
∈ IM ⊂ IR6, F ,

(
f
n

)
∈ IF ⊂ IR6
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where v and ω are the linear and angular velocities of a non-
inertial frame such as those attached to a body and f and
n are the force and torque applied to the body. Notice that
each of these spatial vectors defines a vector space, called
the motion space IM and the force space IF , where both are
subset of the 6D real numbers. Also notice that screws are
point vectors, that is they belong to an specified Euclidian
point in space an no other. Although this is sufficient for
definition of these spacial vectors, the following sections
assumes that both twist and wrench are point vectors at the
same point in a rigid body, unless otherwise specified.

On the other hand, the pose

x ,

(
d
θ

)
∈ IR3+m

of a mobile (non-inertial) frame Σm (for example the one at-
tached to a rigid body) has 6 DOF, consisting in the distance
d∈ IR3 that represents Cartesian position of the frame origin
measured from an inertial frame Σ0 and the set of attitude
parameters θ ∈ IRm (such as Euler angles, roll-pitch-yaw
or any other representation) that defines the rotation matrix
R(θ) ∈ SO(3) that transforms the noninertial coordinates
v̄(m) of any 3D vector v̄ to the inertial coordinates v̄(0):

v̄(0) = R(θ)v̄(m)

and whose time derivative defines uniquely the angular
velocity of the corresponding frame by the relationship:
Ṙ =

[
ω(0)×

]
R = R

[
ω(m)×

]
.

Coordinates transforation of screws (both motion and
force screws) can be carried out by the use of a linear
operator R(θ) : IR6 7→ IR6 called extended rotation:

R(θ),

[
R(θ) 0

0 R(θ)

]
∈ SO6 (1)

such that

ν
(0) = R(θ)ν(m); F(0) = R(θ)F(m)

Being screws point vectors, equivalent translated screws
can be obtained from appropriate linear transformations. In
the case of motion screws, take the example of the center
of mass, whose twist νc can be computed from the twist
ν of the non-inertial frame attached to it and the distance
rc from the origin of the mentioned frame to the center of
mass of the body:

vc = v+ω× rc

ωc = ω

Then the extended translation operator T : IM 7→ IM
defined as follows

T (a),
[

I −[a×]
0 I

]
∀ a ∈ IR3 (2)

is a linear transformation for translating motion screws a
distance a∈ IR3, where the [a×]∈ SS(3) is the cross product
operator defined as a skew symmetric matrix of order 3
that fulfils the 3D vector cross product [a×]b = a× b.

Notice that T T : IF 7→ IF . This is that the transpose of the
extended translation operator, translates wrenches. Then the
translation of both motion and force screws is given as

νc = T (rc)ν ; F = T T (rc)Fc

The extended cross product is a vector product of 6D
screws which is an extension of the 3D vector cross product
defined as

a∧b ,

(
a2×b1 +a1×b2

a2×b2

)
, ∀ (a,b) ∈ IR6

Then an extended cross product operator Ω(a) = [a∧]
arises as follows

Ω(a) = [a∧],
[

[a2×] [a1×]
0 [a2×]

]
∀ a ∈ IR6 (3)

with the following properties for all (a,b)∈ IR6, and r∈ IR3:

Ω(a)a = 0
Ω(a)b = −Ω(b)a

Ω
T (a)b = S(b)a

where S(b) ∈ SS(6) is a skew symmetric matrix of order 6
defined as follows

S(b),
[

0 [b1×]
[b1×] [b2×]

]
(4)

Finally, the rigid motion of a non-inertial frame Σm,
i.e. the 6 DOF that defines the pose of the frame with
respect to an inertial one can be expressed by the use of
single Kinematic Operator X (d,R) is defined by using
the extended operators as follows:

X (d,R), RT (R)T
(

d(0)
)
= T

(
d(m)

)
RT (R) (5)

whose time derivative happens to be (Olguin, 2011):

Ẋ (d,R) = −X (d,R) Ω

(
ν
(0)
)

(6)

= −Ω

(
ν
(m)
)

X (d,R)

II-B. Spatial Dynamics

Kirchhoff equations of motion for a rigid body are the
quasi-Lagrangian version of Newton equations of motion
(Olguin, 2011), in which the coordinates of all variables are
expressed with respect to the non-inertial frame attached to
the body. These equations can be written using the same
notation used to define the screws as follows

d
dt

∂K
∂v

+ω× ∂K
∂v

= f

d
dt

∂K
∂ω

+v× ∂K
∂v

+ω× ∂K
∂ω

= n

where the kinetic energy, K = 1
2 νT Mν , is a quadratic matrix

expression of the twist ν at the origin of frame Σm and M
is the constant Inertia Matrix of order 6:

M =

[
mI −m [rc×]

m [rc×] Ic−m [rc×]

]
∈ IR6×6 (7)
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where m is the total mass of the body, Ic ∈ IR3×3 is the inertia
tensor calculated at the center of mass, and rc ∈ IR3 stands
for the distance from the origin of the reference frame to its
center of mass. Notice that the product Mν =P= ∂K

∂ν
, where

P ∈ IF is the extended momentum, whose time derivative
would yield the extended Newton-Euler equation of motion.
Then M : IM 7→ IF is also a linear operator that maps the
motion extended subset to the force extended subset.

Using the spatial representation screws, Kirchhoff
equations can be written in a compact (spatial) form
(Featherstone, 2000) as:

Mν̇−Ω
T (ν)Mν = F

where F = Fg +FD +Fu represent all the exogenous for-
ce/torque influences on the body like gravity Fg = mG
-where G = (RT g0,0)T ∈ IM is the gravity acceleration
screw in body’s frame coordinates, and g0 is the inertial
coordinates gravity vector-, dissipative (like aerodynamic
forces) FD = −D(·)ν and active control wrenches. Using
the above formulation and properties of the extended cross
product, the Coriolis term can be written as C(ν)ν =
−ΩT (ν)Mν = −S(Mν)ν . Then the Coriolis matrix of the
motion equation of a rigid body when expressed on its own
frame can be written as a skew-symmetric matrix. Then the
motion equation can be written as

Mν̇−S(Mν)ν−mG−FD = Fu (8)

In can be proved (Olguin, 2011) that in the absence of
dissipative forces the product

〈ν ,Fu〉= K̇ +U̇ = P (9)

is the power flow of conservative energies in the rigid body.

II-C. Lagrangian Dynamics

Lagrangian formulation (Goldstein, 1980) :

d
dt

∂L
∂ q̇
− ∂L

∂q
= τ (10)

is a methodology for modeling multi-bodies mechanical
systems where the bodies have inner holonomic constraints,
and the system can be expressed uniquely by a set of n gene-
ralized coordinates q ∈ IRn that represents the directions of
admissible motion of the system, and their time derivatives.

In (10) the Lagrangian function L = K(q, q̇)−U(q) is
the difference of kinetic and potential energy and τ is the
generalized force vector whose coordinates act in the ad-
missible motion directions corresponding to the generalized
coordinates q of the system. In this formulation the twist
of any body is constrained by the holonomic constraints of
the system and shall be given by a kinematic equation of
the form:

ν
(0)
i = 0Ji(q)q̇ (11)

where 0Ji is a Jacobian matrix that transforms the gene-
ralized velocity to the inertial coordinates expression of
each body’s twist, and the kinetic energy K(q, q̇) can be

expressed using (11) as a function of both the generalized
coordinates q and the generalized velocity q̇:

K =
1
2

q̇T H(q)q̇ (12)

where H(q) is the system inertia matrix, defined as

H(q) =
N

∑
i=1

[
0JT

i Ri Mi RT
i

0Ji

]
∈ IRn×n (13)

Notice that the dimensions of this inertia matrix depends
on the dimension n of the generalized coordinates of the
system, while the summation limit is the number N of
different body elements, which happens to be the same only
in the case of open kinematic chains.

Using (12) in (10), the dynamic equation of motion of a
multi-body mechanical system in the absence of gravity is
given as follows

τ = H(q)q̈+C(q, q̇)q̇+g(q) (14)

where the gravity vector g(q)= ∂U
∂q =−∑

N
i=1

[
mi

0JT
vcmi

]
g0 is

the gradient of the potential energy and can be calculated by
the summation of the mass-weighted transposes of the linear
velocity jacobian of the center of mass of each element, by
the inertial coordinates gravity vector g0; and the Coriolis
term, explicitly given as C(q, q̇)q̇ = Ḣ(q)q̇− 1

2
q̇T H(q)q̇

∂q is
very complex to be calculated. Analytical solutions, using
the so called Christoffel symbols lead to accurate solution
but very inefficient for real time computing.

The Power (Spong, 2005) of an overall constrained
mechanical system, expressed with Lagrangian approach is

P = 〈q̇,τ〉= q̇T
τ = K̇ +U̇ (15)

III. BODY DECOMPOSITION MODELING

The Body Decomposition Approach given in (Olguin,
2011) is based in the principle that summation of the Power
of every single rigid body (9) in a multi-body system (15)
must be the same, or equivalently that the mechanical Work
performed by a mechanical structure of N rigid elements
and shall be expressed as the total summation of the
individual Work contribution. Then the dynamic modeling
of a multi-body mechanical system is given by the following
expression:

τ =
N

∑
i=1

JT
i Fi(q, q̇, q̈) (16)

where the Jacobians Ji(q) are local Jacobians that transform
the generalized velocities coordinates q̇ to the local frame
coordinates twist:

ν
(i)
i = Ji(q)q̇ (17)

ν̇
(i)
i = Ji(q)q̈+ J̇i(q, q̇)q̇ (18)

and the wrenches Fi are the active wrenches on each single
body applied at the same reference point of the given body
being reciprocal to the corresponding twist νi.
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Using the equation of motion (8) for rigid bodies and the
local cinematic expressions (17)-(18) in the general BDA
expression (16), it yields:

τ =
N

∑
i=1

[
JT

i MiJi
]

︸ ︷︷ ︸
H(q)

q̈+
N

∑
i=1

[
JT

i MiJ̇i− JT
i S(MiJiq̇)Ji

]
︸ ︷︷ ︸

C(q,q̇)

q̇

−
N

∑
i=1

[
JT

i MiR
T
i
]

G0︸ ︷︷ ︸
g(q)

−
N

∑
i=1

(
JT

i FDi

)
︸ ︷︷ ︸

D(·)q̇

(19)

which is equivalent to explicit Lagrangian expression (14)
plus the dissipative terms -which can also be included
using the Virtual Power principle. Notice that the Coriolis
matrix becomes extremely simple and fulfils the basic
Lagrange/passsive property: 2C−Ḣ ∈ SS(n) (Olguin, 2011).
Then the Christoffel which are calculated with the partial
derivative of each element of H is not longer need, but
instead the time derivative of each local jacobian J̇i is
required.

III-A. Recursive BDA

Open kinematic chains allow a recursive calculation of
all the terms in the BDA expression, which simplifies
the numerical evaluation of each term. This recursion is

Figura 2: Terms obtained from the BDA Block

based on the same recursion used in the efficient inverse
dynamic methods proposed in (Featherstone, 2000). While
the direct kinematics expression for these methods are based
in the modified Denavit-Hartenberg convention, in this work
however, we have adapted this recursion to the original D-H
convention, resulting in the following twist recursive basic

expression:

ν
(i)
i = Xi(di,Ri)

(
ν
(i−1)
i−1 +λiq̇i

)
(20)

where Xi(di,Ri) =Xi(qi) is the relative kinematic operator
from a father frame Σi−1 to his son frame Σi, whose
arguments di(qi) ∈ IR3 and Ri(qi) ∈ SO(3) are the relative
distance and relative rotation matrix resulting from the
homogeneous transformation from frame Σi−1 to Σi; and
λi ∈ IR6 is a joint director screw, constant in the father frame,
defined as

λi = λ
i−1
i ,

(
λTi

λRi

)
(21)

where vectors (λTi ,λRi) ∈ IR3 stands for the 3D unit direc-
tion vectors of either pure translation or pure rotation of
link i. It is worth noticing that the term λiq̇i = ν

(i−1)
i/i−1 stands

for the relative velocity between a frame Σi and his father
Σi−1 via the relative motion of the associated generalized
coordinate. Then from (6) it follows that

Ẋi(di,Ri) =−Xi(di,Ri)Ω(λiq̇i)

Comparing (17) with (20) it follows that the local Ja-
cobian used in the BDA can be expressed in a recursive
formulation as

Ji = Xi(qi) [Ji−1(q1 · · ·qi−1)+Λi] ∈ IR6×n (22)

where Λi is a constant matrix with null elements except for
the ith-column which is indeed the corresponding director
vector λi:

1, . . . , i, . . . ,n

Λi , [0, . . . ,λi, . . . ,0] ∈ IR6×n

Then it follows that the time derivative of each local
Jacobian becomes

J̇i = Xi(qi)
[
J̇i−1−Ω(λiq̇i)Ji−1

]
However, in the recursive methodology, it result more

advantageous to recursively calculate the term J̇iq̇ instead.
If this is defined as a residual acceleration, its recursive
equation follows straightforward as:

ai , J̇iq̇ = Xi(qi)
(
ai−1 +Ω(νi−1)λiq̇i

)
Then the ith generalized force contribution in (19) due to

the body i becomes τi = Hiq̈+hi(q, q̇) where

Hi = JT
i MiJi

hi(q, q̇) = JT
i

(
Miai−S(Miν

(i)
i )ν

(i)
i −miGi−FDi

)
Which are the terms that can be evaluated recursively as
shown in Fig.3.
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Figura 3: Main Rotor BDA Blockset

IV. HELICOPTER MODELING

The body of the helicopter is modeled as a rigid body
whose input is a wrench provided by the aerodynamics of
the main and tail rotors and its output is the helicopter pose.
The aerodynamic forces produced in the main rotor depend
on the dynamic behavior of the blades, which depends
itself on the relative position of each blade with respect
to the helicopter and its relative velocity with respect to the
wind. In order to keep the following analysis as simple as
possible, the tail rotor has been neglected. Then the vector
of generalized coordinates is the following:

q =



ẋv

q̇n


=



x
y
z
φ

θ

ψ

Ψ

θr
βr
γr
θs
βs
γs



=



longitude
latitude
altitude

roll
pitch
yaw

rotor azimuth
re f blade pitch
re f blade f lap
re f blade lag

sec blade pitch
sec blade f lap
sec blade lag



∈ IR13

The dynamic model of the helicopter is obtained using
the BDA formulation in the same way as it is used to analyse
articular robots, the analysis using Euler-Lagrange formula-
tion can be seen more detailed in (Dorado y Olguin, 2010).

In the case of the X-cell 90, whose main rotor has 2
blades in a tree-like open kinematic structure the blocks

describing the rotor model can be seen in Fig.3.

Figura 4: Helicopter Scheme Model

Every blue block represents a single free flying rigid body
dynamic, having constant kinematic and dynamic parame-
ters (small green blocks) that can be added externally to
make the appropriate estimation if it is required. The brown
arrow (see Fig.2) heritage both kinematic and dynamic
variables in a parent to child relationship. An exception
is found only in the inertia matrix and non-linear dynamic
terms at the beginning of the secondary blade chain in order
to avoid inertial duplication in the final summation.

To include the aerodynamic forces in (19), they are
considered as lumped forces at the equivalent lag pressure
points on each blade (Dorado y Olguin, 2010). On the other
hand, the rotor wind induced velocity vi is considered quasi-
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Figura 5: Induced velocity calculation using a second order
transfer function

constant because its dynamics is slower than the mechanics
of the rotor. Then an off-line evaluation would give suffi-
ciently good performance (Morten, 2010). In consequence,
we have proposed the following modification shown in
Fig.5: 1) the aerodynamic thrust (and drag) produced by
each blade is evaluated with a a-priori given induced velo-
city vi(t) using the blade element theory, 2) a new estimated
induced velocity v̂i(t) is calculated using the air momentum
theory, and 3) a delayed 2nd-order filtered induced velocity
vi(t+D) is used to evaluate again the thrust and drag forces
on each blade.

The operations can be done using most of the simulation
software in the market. In this case we have used Simulink
from MathWorks where we have created a generalized non-
inertial dynamic block used to simulate each one of the
bodies in the articulated chain shown in Fig.4. It seems
important to remark that recursive geometric Jacobians,
evaluated from (22) depend on the proper evaluation of the
corresponding Λi matrices. Then proper use of this operators
is essential for the procedure to work properly.

V. CONCLUSIONS

The mechanic complexity of a non-inertial multi-body
system can be modeled using the BDA formulation and
further it can be implemented on a common simulation
environment such as Matlab Simulink, obtaining a very
efficient simulator because of the computation time and
the simple implementation of the operators. In addition the
complexity of both the Coriolis term and the non-linear
aerodynamics are solved by a proper matrix transformation
of each of these terms at each individual body element
in the system, and thanks to the recursive property in
open kinematic chains. The modularity of the methodology
allows the construction of simple yet efficient simulators
which allows the simplification of the induced wind velocity
calculation. Each body can be expressed in a general form
using blocks to represent each operation, having as inputs
the required constant kinematic parameters given by the
Denavit-Hartenberg convention and dynamic parameters.
Simulation time has been reduced substantially from classic

Euler-Lagrange formulation, then advanced programming
method with a C or C++ languages are promising.
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